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Abstract: Singlet oxygenation of 2,2,3,3-tetraaryloxadisiliranes la-d gives the corresponding 
1,2,4.3.5-trioxadisilolanes 2a-d, derivatives of a novel class of cyclic peroxides. The 
reaction mechanism is discussed in terms of possible peroxonium ion intermediate 6a as a 
nucleophilic oxidizing species. 

A considerable interest has been devoted to the oxidation of organosilicon compounds. It 

is well known that strained organosilicon molecules are readily oxidized by molecular 

oxygen. 1 Disilenes are reported to afford oxadisiliranes. 1,2,3.4-dioxadisiletanes and 

1,3,2,4-dioxadisiletanes in comparable amounts. * Oxadisiliranes slowly undergo further 

oxidation by atmospheric oxygen to 1,3,2,4-dioxadisiletanes. Despite the significance of 

these reactions, few mechanistic investigations were carried out. Recently, however, a 

considerable evidence has been provided for dioxygen insertion into a silicon-silicon o-bond 

in the reaction of singlet oxygen ( ‘02 )3 with tetramesityldisilirane.4 This paper reports a 

preliminary study on ‘02 addition to oxadisiliranes la-d, which shed some light on these 

oxygenation reactions. 

Photooxygenation of oxadisiliranes la-d5 was carried out in dry benzene with 2x10-*M 

of substrate and tetraphenylporphine (TPP, 1~10’~M ) as sensitizer. The solution was 

irradiated at room temperature under oxygen with two 500-W tungsten-halogen lamps using a 

sodium nitrite filter solution (cut off 400nm). Pure 1,2,4,3,5-trioxadisilolanes 2a-d7 were 

separated by silica gel flash column chromatography and characterized by means of 

analytical and spectroscopic data. The rate corqtants (kp=7.1x104~1s~1 for la 

8.3~lO~M-~s-~ for 1 b) for the interaction of ‘02 with la and 1 b were measured 

quenching of ‘02 emission (1268nm) in benzene. 8 When the photolysis of la and lb 

carried out under nitrogen or in the absence of sensitizer, no reaction occurred. 

photooxygenation was inhibited by 1.4-diazabicyclo[2.2.2]octane (DABCO). a 
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quencher. Addition of tri-rert-butylphenol, a radical trap, did not have any influence. 

Dioxadisiletanes 3cg and 3d are produced by molecular oxygen without light or sensitizer, 

and in the presence of DABCO, consistently with West’s results2d. These control 
experiments show that ‘02 is surely responsible for the production of trioxadisilolanes 

2a-d. and triplet oxygen for 3c and 3d. 

Table 1. Photooxygenation of Oxadiiliranes 

Oxadisilirane 1 

a; R = 2,6-diiipmpylphenyl 

b; R = 2,6diethylphenyl 

c;R=mesityl 

d; R = 2,6dimethyiphenyl 

Additive 

h&SO 
Ph2S0 

Ph2S 

Products and Yields(%) 
2 3 
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X-ray crystallographic study of 26 established the structure of the new ring system 

unambiguously as shown in Figure 1. together with selected bond distances and angles.1° 

The molecule possesses a two fold rotation axis which passes through the O(1) atom and 

bisects 0(2)-O(2)’ bond. The central ring system adopts C2 half-chair conformation. The aryl 

Figure 1. ORTEP diagram of 2d 

groups occupy helical arrangement about each silicon atom. The bond lengths around the 

1,2,4,3,5-trioxadisilolane ring are generally within expected ranges and the structure may be 

regarded roughly as a “similar figure ” of that of secondary oxonides in the carbon seri~s.t~~ 

The C-!&C angle (113.59 is slightly larger and the O-S&O one is correspondingly smaller 

than that expected for a tetrahedrally coordinated silicon. The Si-0-Si angle is less 

constrained compared to that of 3c (869.12 
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1,2,4,3,5-Trioxadisilolanes have some different chemical properties in contrast to 

secondary ozonides.13 Thermolysis of 2~ in toluene at IOOC’ afforded 4c via Criegee type 

rearrangement. l4 Reduction of 2c and 2d with triphenylphosphine took place very rapidly at 

room temperature yielding 3c and 3d , respectively. as shown in Scheme 2. 

Scheme 2. 
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Photooxygenation of la in the presence of 100 eq of sulfoxides as a nucleophilic 

oxygen-atom acceptor4 gave 3a with accompanying 2a and the corresponding sulfones. On 

the contrary, 3a was not produced at all in the presence of 100 eq of diphenyl sulfide as an 

electrophilic oxygen-atom acceptor (Table 1). Compound la is inert toward sulfoxides, and 

2a and 3a are thoroughly stable under the reaction condition. In the presence of DABCO. 

the consumption of la and the formation of 2a and 3a were completely inhibited. The 

results might be explained by the mechanism involving the peroxonium ion intermediate 5a 

as shown in Scheme 3. Nucleophilic oxygen-atom transfer from 5a to sulfoxides is less 

efficient compared to the case of 64 with relative abilities of 1:3.6 probably due to the 

decrease of nucleophilicity of the exocyclic oxygen by the electronegative y-oxygen. and also 

the steric repulsion of 2,6-diisopropylphenyl groups. The sterically less hindered 

oxadisilirane lb might be a superior substrate for the oxygen-atom transfer of the 

peroxonium ion. Unfortunately, however, lb is rapidly converted to 3b by sulfoxides.15 

The reaction of ‘0, is less sensitive to the steric hindrance around the silicon atom than those 

of 302 and sulfoxides. Cur preliminary observation suggests that ‘0, may approach 

perpendicularly to the Si-Si bond to afford peroxonium ion 5, whereas both 30, and 

sulfoxides may directly attack on the silicon atom. l6 
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